
Volt Active Data:
Why Different is Better
Real-Time Data Processing at Scale
for Mission-Critical Applications

2VOLT ACTIVE DATA: WHY DIFFERENT IS BETTER

Volt Active Data (Volt) is architected differently from
any data processing platform you’ve worked with.
Now let’s say that another way: Volt is better than
any data processing platform you’ve worked with or
considered. It is proven, in the real world, to meet the
demands of mission- and business-critical applications
without forcing uncomfortable and/or costly
compromises on requirements like stack complexity,
TCO, scale, accuracy, or resiliency.

Volt exists because Dr. Michael Stonebraker, the
creator of Postgres and Vertica, foresaw in 2008 that
scaling transaction processing systems to meet the
future needs of mission-critical systems, including
those used for real-time analytics, stream processing,
and financial transactions, required a complete
architectural rethink.

In this paper, we explain how that architectural rethink
eliminates the typical compromises forced by other
systems and why, if you are developing applications
for ‘millisecond-sensitive’ use cases, Volt should be on
your must-consider list.

What Sets Volt Apart
The foundational value of Volt – what differentiates it from other data platforms and why it’s so
essential for mission-critical applications – is that it can process a lot of ACID transactions quickly
and reliably:

0 By ‘a lot’ we mean ‘hundreds of thousands per second’, 10x more than a legacy RDBMS or NoSQL.

0 By ‘ACID’ we mean with strict serializability — the highest possible level.

0 By ‘quickly’ we mean with an average latency of 1 to 2ms and a 99th percentile latency of
less than 10ms, which is as fast as you can get for a data platform that uses more than one server.

0 By ‘reliably’ we mean at least ‘five nines’– less than 6 minutes of downtime per year.

For most data platforms, achieving all of the above at once is incredibly difficult if not impossible.
For example: high volumes and low response times can go together, but usually at the expense of
ACID, which means decisions may be using bad (ie, outdated or inaccurate) data.

The intent was to achieve all of the above at the same time, without making unacceptable compromises.

This led to a non-obvious design approach: optimizing for individual small ACID write transactions.

It turns out that by focusing on individual small ACID write transactions, Volt can do it all.

3VOLT ACTIVE DATA: WHY DIFFERENT IS BETTER

Unique Design Principles

1. “Always process, sometimes store”
The purpose of Volt is to process data, not
store it. We let you store data because
you need context to make immediate decisions,
not because you might need it five years from
now. Requests to Volt are routed to the
server(s) the data lives on and actioned by a
Java class running on that server with direct,
immediate, and exclusive access to your data.
There are many advantages to this, including
the ability to solve the same business problem
with far fewer round trips than other systems.

2. A Single Layer
All Volt nodes have the same responsibility.
Nodes cooperate behind the scenes for
aggregation, indexing, and high availability.
This means scaling Volt is as simple as adding
more nodes, which lowers TCO by eliminating
the need for extravagant hardware.

3. Purpose-Built for Scale, Speed,
and ACID
Volt was created as a complete OLTP solution,
not a ‘minimum viable product’ that did one
or two things. This means that we have never
had to make any architectural compromises
or kludges to retrofit speed, scale, or ACID;
all three were present on day one.

4. Memory First
Volt keeps all needed data in RAM, on the node in question. This is how it can consistently and
rapidly do lots of transactions. Because Volt supports large clusters, we have users running
systems involving a total of more than 5TB of RAM, while still getting predictable 1-2ms latency.
Once you focus only on holding what you need to enable transactions that are happening today,
RAM generally ceases to be a limiting factor. Volt never needs to wait for I/O when processing,
which means it doesn’t need to spawn lots of threads to keep things moving.

4VOLT ACTIVE DATA: WHY DIFFERENT IS BETTER

How Volt Meets Mission-Critical Application Requirements
Now that we understand the principles that drive Volt’s product innovation, let’s zoom out a bit to
understand how this process translates into meeting the requirements of mission-critical applications.

Scale
Because Volt only has one layer and has a ‘shared-nothing’ architecture, scale is only limited by the
hardware you can afford. As a general rule, the first challenging constraint will be when people
saturate the network. For example: a nine-node Volt cluster sending 70,000 transactions a second,
each 20 KB in size, was able to saturate a 10-Gbit network before any other bottlenecks emerged.
The largest Volt production cluster we’re aware of is larger than 30 nodes. We also have production
systems that can handle 750,000 transactions per second.

Low Latency
Volt uses a blazingly fast C++ core for data management. Volt’s design provides the base
functionality of an OLTP RDBMS without many of the overheads. By having a single, dedicated
thread for each partition, Volt eliminates the overhead of context-switching and deciding which
transaction to work on next, and, in doing so, also eliminates ‘long-tail’ latency. Volt also keeps all
the data in RAM, which removes the need for latency-causing I/O operations. Finally, Volt replicates
requests as they arrive, eliminating the extra time required to create backup copies after an event
has finished.

5VOLT ACTIVE DATA: WHY DIFFERENT IS BETTER

ACID Transactions
Volt achieves ACID transactions by only running one transaction at a time, to completion, on each
partition. Users extend a Java class that lives on the server. This Java is used to combine individual
SQL statements with server-side business logic. Clients send a request with the name of the desired
class and its required parameters, which is invisibly routed to all the nodes that have a copy of the
data. Dedicated threads on each server process all the work for the partitions. All transactions begin
and either succeed or fail during a single trip to the server, and all copies of the data are updated at
the same time. This prevents issues with eventual consistency and also enables fast recovery from
node outages, as the surviving nodes have up-to-date copies of the data they need.

Cloud Native
Cloud native orchestration tools like Kubernetes originate from the stateless web application world,
but many database technologies struggle to handle the complexity of expected automation and state.

Fortunately, Volt is a shared-nothing platform that’s well-suited to being cloud native. Volt is
available as Docker container images that can be fully orchestrated by Kubernetes and configured
and deployed via Helm and the Volt Helm charts.

Volt also has a full-featured Kubernetes operator that manages the Volt specifics in starting/
stopping Volt clusters, provides auto healing when the Volt pod fails, and supports autoscaling (up
and down) with elastic add and shrink.

Locking
Volt uses deterministic queues of requests in RAM to manage inbound and outbound messages. Multiple
requests for the same resource will always be forced to form an orderly queue. It’s not possible for two
requests to try and access the same data at the same time, so locking issues don’t happen.

Global High Availability With Geo-Replication
Via Volt Active(N), Volt has production systems running double-, triple-, and even quadruple-active
geo-replication across multiple physical sites in production. The two primary drivers for this level
of geo-replication are survivability and ensuring low latency for continent-size deployments. Volt
automatically resolves conflicts using a ‘last write wins’ algorithm and tells you what was lost as part
of the resolution so that the application can mitigate the situation, if needed.

6VOLT ACTIVE DATA: WHY DIFFERENT IS BETTER

Low Total Cost of Ownership
Volt simplifies your stack, enabling much faster and
more efficient data processing.

Specifically, Volt offers:

0 Shared-nothing hardware
0 No requirement for extravagant hardware
0 Efficient use of CPU that’s 9x faster than

legacy RDBMS and 4x faster than NoSQL

This means Volt has very low running costs. For
Yahoo! Cloud Serving Benchmark (YCSB) on generic
AWS hardware (spot instances), Volt can get 500K
TPS for a hardware cost of about US$2.50 an hour,
around half the price of other platforms we have
data for.

SQL
Volt is ANSI-92 compatible.

It also has extensions for working with streams,
migration of data to offline storage, and timed
deletion of stale data:

0 A MIGRATE DML command moves data from a
table to an export stream on command. This
can also be done using the TTL option of
CREATE TABLE.

0 STREAM objects are used to get data from Volt into
Kafka in an ACID-compliant manner. CREATE STREAM
functions much the same way as CREATE TABLE,
except the only legal DML operation is INSERT.

0 All VIEW objects in Volt are like TABLE objects
in that they have real rows and can be indexed.
Adding a view to a table slows down operations
by around 1-3%, making them both affordable
and useful. Views can also be built on STREAM
objects, so you can easily track how many and
what kind of records you sent to a STREAM.

High Availability Within a Cluster
For high availability within a cluster, all state lives on a partition that exists on at least two nodes in
a cluster (what we call the ‘Leader’ and ‘Follower’ partitions). Because of how we process requests,
there is no extra latency to copy changes and no eventual consistency.

7VOLT ACTIVE DATA: WHY DIFFERENT IS BETTER

Streaming Data
Volt is 100% compatible with Kafka. It can be configured to continuously read Kafka and turn each
message into a Volt request. This will happen at the speed of Kafka and the scale of Volt.

Volt can also create SQL “TABLES” which are in fact Kafka streams. These can be written to using
the SQL INSERT command and follow normal transactional semantics. Volt can do all this while also
doing conventional client-server requests at the same time. So with Volt, you can have a request that
takes a decision, sends a message back to a client, and at the same time writes a record describing
the decision to Kafka. This also means there is no need to do bulk extraction of data from Volt, as it
can be streamed out as generated.

Volt can also emulate Kafka at the wire protocol level, which means that a Volt cluster can look and
act like a Kafka cluster on the network, despite having a completely different level of capability.

White-Label Ready For OEM Partners
For the reasons explained in this document, Volt offers an unparalleled foundation for software
vendors and systems integrators to build their own mission-critical applications as an OEM partner.
In fact, the majority of Volt’s customers follow this approach. Completely horizontal in scope, Volt
allows OEMs to take advantage of its reliability and performance to reduce time to market and
deliver robust, high-quality applications to their end users. With years of real-world, field-tested
performance, comprehensive ‘telco-grade’ support, rigorous testing, and continuous updates, Volt
is the ideal real-time data processing platform for businesses looking to innovate and stay ahead in a
competitive landscape.

Proof Points
Scale – Volt has a Telco charging system that does up to 750,000 TPS per second.

Speed – A major fantasy sports company uses Volt to register 1,000,000 contestants for a single
game in 14.5 seconds.

Accuracy – A major bank uses Volt to report trades to multiple regulators that have extreme
expectations around accuracy and timeliness.

Customer satisfaction – >98% of our customers renew their contracts.

True geo-replication – We have live active-active-active deployments.

Enterprise upgrades – You can upgrade all the nodes of a cluster without any downtime or
dropped transactions.

Geo-replication and upgrades – You can independently upgrade schema and code for different
sites in a geo-replicated deployment, without downtime.

Consistently low TCO – AWS operating costs for an OLTP application are around US$2.50/hr for
each 100,000 TPS supported.

8VOLT ACTIVE DATA: WHY DIFFERENT IS BETTER

The Volt Active Data Architecture
Volt uses a CPU core as a scaling unit, which we refer to as a ‘partition’. Each partition is
responsible for a portion of the data, which means both processing and storage. Each one
runs a single thread and takes requests off a queue with a fixed order, before running them
to completion. High availability comes from having the same queue run on two or more partitions
on different physical servers.

Physical persistence comes from regular snapshots to local disk and writing the queue of incoming
requests to a ‘command log’, which can then be replayed from the last snapshot.

AGGREGATE

INGEST MEASURE DETECT DECIDE

Partition 2

Partition 3

PROCEDURE EXECUTION

Partition 1

HIGHLY
AVAILABLE
CLUSTER

NODE A

NODE B

NODE C

COMMAND
LOGS

STORE

STREAMS

EXPORT
STREAMSACT

ARCHIVALS

REAL TIME DECISIONS

ALERTS

CLIENT
API’s

DATA
SOURCES LOADERS

MATERIALIZED
VIEWS

DASHBOARDS

ML MODELS

TABLES

<10ms

SNAP SHOTS

The Volt Architecture

9VOLT ACTIVE DATA: WHY DIFFERENT IS BETTER

Volt Architecture Terminology

K Factor
The K factor is the number of extra data copies we keep. ‘k=1’ means 1 spare copy. Spare copies
never live on the same physical server as each other or the master copy.

Partition
Volt uses a hash algorithm to divide workloads. By default, it divides each workload eight ways. Each
division is handled by a partition. In practice, there is usually a 1:1 relationship between partitions
and CPU cores. A partition can never use more than 1 CPU core. Volt places multiple copies of each
partition on different servers to provide high availability and designates one copy as the ‘Partition
Leader’ for clients to talk to. The other copies can become the Partition Leader if the node the
Partition Leader lives on dies.

Node
A node is a physical server, virtual server, or containerized pod running Volt. A node hosts one or
more partitions. As a rule of thumb, the number of partitions should be three-fourths the number
of physical cores available for Volt. Under normal circumstances, some of a node’s partitions will be
leaders, and others will follow other partitions on other nodes.

Client
A Volt client is like a normal client but is aware of how the cluster is organized. The client sends each
request to the correct Partition Leader. During cluster expansions and other events that change
the topology of the system, requests could end up at the wrong node. When this happens, nodes
reroute the request to the correct destination.

Snapshots
Every now and then, Volt writes the contents of RAM to a local disk using a Snapshot. Snapshots are
only read when the cluster is restarted.

Command Log
The Command Log is a serialized list of requests for a partition. When the cluster restarts, it loads the latest
Snapshot and then uses the Command Log to redo all the things that happened after the snapshot.

Request
This is where everything with Volt comes together. A request is a command to execute an
Augmented Transaction. It consists of a Transaction Name and a set of parameters. As requests
arrive at the partition, they are written to the Command Log. But Volt does requests in a very unique
way that allows us to process requests both quickly and accurately. This is an important aspect of
Volt’s design, which deserves further explanation.

10VOLT ACTIVE DATA: WHY DIFFERENT IS BETTER

Complex Transactions, Quick Decisions:
How Volt Processes Requests
To fully understand how Volt can do what it does, we need to take a closer look at the unique way it
processes requests. Volt will process complex transactions that mix Java and SQL code in an atomic
way, as long as the code is deterministic so that all the copies come up with the same answer.

All of the steps below happen in 1-2 milliseconds, with the actual processing taking microseconds.

This is how Volt processes a request:

1. The user sends the name of a
required class that implements
VoltProcedure.run, along
with its parameters, to a
client object.

2. The client figures out where the
partition leader for the request
lives, and routes the request to
it. In this case, it’s the leader of
partition 4, on Node 2.

3. The partition leader copies the
request to its follower(s) on
other nodes. In this case, it gets
copied to Node 3. Note that we
are copying the request, not the
work or the results of the work.

4. Both copies of the partition
execute the request. Since a
partition only does one request
at a time, and the followers only
do requests sent by the leader,
the partitions remain in sync.

5. As soon as the leader finishes
the request, it waits for a
response from its follower(s),
then compares the answers,
and, if they agree, sends the
results back to the client.

6. The client returns the result
to the user.

54 Middlesex Turnpike
Suite 203, Bedford, MA 01730

+978.528.4660 voltactivedata.com

© Volt Active Data, Inc

Conclusion: Why Mission-Critical Applications
Need Volt
In the end it all comes back to data — processing it quickly, without downtime or errors.

If you can do this in the age of 5G, Edge, and IoT, you unquestionably have a leg up on
your competition.

Over the past decade Volt has proven itself in industries from telco to finance to manufacturing to
supply chain. All of these industries have mission-critical applications that can’t afford to be wrong
or go down.

That’s why one customer called us “the Fedex of the data world” — because Volt just works. What
they meant was they are confident deploying their own mission-critical applications to serve their
customers, knowing that Volt can efficiently run the same applications at workloads from a few
hundred TPS to hundreds of thousands of TPS, with no code, minimal configuration changes, and
no post-deployment behavior changes. This is one of the main reasons our customer renewal rate
has been more than 98% for years.

Try Volt Active Data Today

https://www.voltactivedata.com/try-volt/

